Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
1.
Mol Nutr Food Res ; 68(8): e2300831, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602198

RESUMO

SCOPE: The excretion of dietary odorants into urine and milk is evaluated and the impact of possible influencing factors determined. Furthermore, the metabolic relevance of conjugates for the excretion into milk is investigated. METHODS AND RESULTS: Lactating mothers (n = 20) are given a standardized curry dish and donated one milk and urine sample each before and 1, 2, 3, 4.5, 6, and 8 h after the intervention. The concentrations of nine target odorants in these samples are determined. A significant transition is observed for linalool into milk, as well as for linalool, cuminaldehyde, cinnamaldehyde, and eugenol into urine. Maximum concentrations are reached within 1 h after the intervention in the case of milk and within 2-3 h in the case of urine. In addition, the impact of glucuronidase treatment on odorant concentrations is evaluated in a sample subset of twelve mothers. Linalool, eugenol, and vanillin concentrations increased 3-77-fold in milk samples after treatment with ß-glucuronidase. CONCLUSION: The transfer profiles of odorants into milk and urine differ qualitatively, quantitatively, and in temporal aspects. More substances are transferred into urine and the transfer needs a longer period compared with milk. Phase II metabolites are transferred into urine and milk.


Assuntos
Acroleína/análogos & derivados , Monoterpenos Acíclicos , Benzaldeídos , Eugenol , Leite Humano , Odorantes , Humanos , Leite Humano/química , Feminino , Odorantes/análise , Eugenol/urina , Eugenol/metabolismo , Eugenol/análogos & derivados , Adulto , Benzaldeídos/urina , Monoterpenos Acíclicos/urina , Glucuronidase/metabolismo , Lactação , Acroleína/urina , Acroleína/metabolismo , Monoterpenos/urina
3.
Mol Biol Rep ; 51(1): 439, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520476

RESUMO

BACKGROUND: Ocimum tenuiflorum L. is a highly traded medicinal with several therapeutic values. Green Tulsi and purple Tulsi are two subtypes in O. tenuiflorum and both have the same medicinal properties. Recent reports have revealed that purple Tulsi contains higher quantities of methyl eugenol (ME), which is moderately toxic and potentially carcinogenic. Therefore, we developed an allele-specific PCR (AS-PCR) method to distinguish the green and purple Tulsi. METHODS AND RESULT: Using the green Tulsi as a reference, 12 single nucleotide polymorphisms (SNPs) and 10 insertions/deletions (InDels) were identified in the chloroplast genome of the purple Tulsi. The C > T SNP at the 1,26,029 position in the ycf1 gene was selected for the development of the AS-PCR method. The primers were designed to amplify 521 bp and 291 bp fragments specific to green and purple Tulsi, respectively. This AS-PCR method was validated in 10 accessions from each subtype and subsequently verified using Sanger sequencing. Subsequently, 30 Tulsi powder samples collected from the market were subjected to molecular identification by AS-PCR. The results showed that 80% of the samples were purple Tulsi, and only 3.5% were green Tulsi. About 10% of the samples were a mixture of both green and purple Tulsi. Two samples (6.5%) did not contain O. tenuiflorum and were identified as O. gratissimum. CONCLUSION: The market samples of Tulsi were predominantly derived from purple Tulsi. The AS-PCR method will be helpful for quality control and market surveillance of Tulsi herbal powders.


Assuntos
Eugenol/análogos & derivados , Ocimum sanctum , Ocimum , Extratos Vegetais , Ocimum sanctum/genética , Ocimum/genética , Alelos , Reação em Cadeia da Polimerase
4.
PLoS One ; 19(3): e0300866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512951

RESUMO

The Male Annihilation Technique (also termed the Male Attraction Technique; "MAT") is often used to eradicate pestiferous tephritid fruit flies, such as Bactrocera dorsalis (Hendel). MAT involves the application of male-specific attractants combined with an insecticide in spots or stations across an area to reduce the male population to such a low level that suppression or eradication is achieved. Currently, implementations of MAT in California and Florida targeting B. dorsalis utilize the male attractant methyl eugenol (ME) accompanied with a toxicant, such as spinosad, mixed into a waxy, inert emulsion STATIC ME (termed here "SPLAT-MAT-ME"). While highly effective against ME-responding species, such applications are expensive owing largely to the high cost of the carrier matrix and labor for application. Until recently the accepted protocol called for the application of approximately 230 SPLAT-MAT-ME spots per km2; however, findings from Hawaii suggest a lower density may be more effective. The present study adopted the methods of that earlier work and estimated kill rates of released B. dorsalis under varying spot densities in areas of California and Florida that have had recent incursions of this invasive species. Specifically, we directly compared trap captures of sterilized marked B. dorsalis males released in different plots under three experimental SPLAT-MAT-ME densities (50, 110, and 230 per km2) in Huntington Beach, CA; Anaheim, CA; and Sarasota-Bradenton, FL. The plots with a density of 110 sites per km2 had a significantly higher recapture proportion than plots with 50 or 230 sites per km2. This result suggests that large amounts of male attractant may reduce the ability of males to locate the source of the odor, thus lowering kill rates and the effectiveness of eradication efforts. Eradication programs would directly benefit from reduced costs and improved eradication effectiveness by reducing the application density of SPLAT-MAT-ME.


Assuntos
Eugenol/análogos & derivados , Inseticidas , Tephritidae , Animais , Masculino , Controle de Insetos/métodos , Inseticidas/farmacologia , Drosophila
6.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396823

RESUMO

Aspirin eugenol ester (AEE) is a novel medicinal compound synthesized by esterifying aspirin with eugenol using the pro-drug principle. Pharmacological and pharmacodynamic experiments showed that AEE had excellent thromboprophylaxis and inhibition of platelet aggregation. This study aimed to investigate the effect of AEE on the liver of thrombosed rats to reveal its mechanism of thromboprophylaxis. Therefore, a multi-omics approach was used to analyze the liver. Transcriptome results showed 132 differentially expressed genes (DEGs) in the AEE group compared to the model group. Proteome results showed that 159 differentially expressed proteins (DEPs) were identified in the AEE group compared to the model group. Six proteins including fibrinogen alpha chain (Fga), fibrinogen gamma chain (Fgg), fibrinogen beta chain (Fgb), orosomucoid 1 (Orm1), hemopexin (Hpx), and kininogen-2 (Kng2) were selected for parallel reaction monitoring (PRM) analysis. The results showed that the expression of all six proteins was upregulated in the model group compared with the control group. In turn, AEE reversed the upregulation trend of these proteins to some degree. Metabolome results showed that 17 metabolites were upregulated and 38 were downregulated in the model group compared to the control group. AEE could reverse the expression of these metabolites to some degree and make them back to normal levels. The metabolites were mainly involved in metabolic pathways, including linoleic acid metabolism, arachidonic acid metabolism, and the tricarboxylic acid (TCA) cycle. Comprehensive analyses showed that AEE could prevent thrombosis by inhibiting platelet activation, decreasing inflammation, and regulating amino acid and energy metabolism. In conclusion, AEE can have a positive effect on thrombosis-related diseases.


Assuntos
Aspirina/análogos & derivados , Eugenol/análogos & derivados , Trombose , Tromboembolia Venosa , Ratos , Animais , Eugenol/farmacologia , Eugenol/uso terapêutico , Eugenol/metabolismo , Anticoagulantes/farmacologia , Multiômica , Tromboembolia Venosa/tratamento farmacológico , Aspirina/uso terapêutico , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Trombose/metabolismo , Fígado/metabolismo , Fibrinogênio/metabolismo , Orosomucoide/metabolismo
7.
Nutrients ; 16(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398805

RESUMO

Photoaging, the primary cause of skin aging damage, results from chronic ultraviolet (UV) exposure, leading to dryness and wrinkle formation. Nutritional intervention has emerged as a practical approach for preventing and addressing the effect of skin photoaging. The primary aromatic compound isolated from clove oil, isoeugenol (IE), has antibacterial, anti-inflammatory, and antioxidant qualities that work to effectively restrict skin cancer cell proliferation. This investigation delved into the advantages of IE in alleviating skin photoaging using UVB-irradiated skin fibroblasts and female SKH-1 hairless mouse models. IE alleviated UVB-induced photodamage in Hs68 dermal fibroblasts by inhibiting matrix metalloproteinase secretion and promoting extracellular matrix synthesis. In photoaged mice, dietary IE reduced wrinkles, relieved skin dryness, inhibited epidermal thickening, and prevented collagen loss. Additionally, the intestinal dysbiosis caused by prolonged UVB exposure was reduced with an IE intervention. The results of Spearman's analysis showed a strong correlation between skin photoaging and gut microbiota. Given the almost unavoidable UVB exposure in contemporary living, this research demonstrated the efficacy of dietary IE in reversing skin photoaging, presenting a promising approach to tackle concerns related to extrinsic skin aging.


Assuntos
Eugenol/análogos & derivados , Microbioma Gastrointestinal , Envelhecimento da Pele , Feminino , Animais , Camundongos , Raios Ultravioleta/efeitos adversos , Suplementos Nutricionais , Camundongos Pelados , Pele
8.
Chem Biodivers ; 21(3): e202301929, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278761

RESUMO

Schistosomiasis is a major neglected disease that imposes a substantial worldwide health burden, affecting approximately 250 million people globally. As praziquantel is the only available drug to treat schistosomiasis, there is a critical need to identify new anthelmintic compounds, particularly from natural sources. To enhance the activity of different natural products, one potential avenue involves its combination with silver nanoparticles (AgNP). Based on this approach, a one-step green method for the in situ preparation of dehydrodieugenol (DHDG) by oxidation coupling reaction using silver and natural eugenol is presented. AgNP formation was confirmed by UV-Vis spectroscopy due to the appearance of the surface plasmon resonance (SPR) band at 430 nm which is characteristic of silver nanoparticles. The nanoparticles were spherical with sizes in the range of 40 to 50 nm. Bioassays demonstrated that the silver nanoparticles loaded with DHDG exhibited significant anthelmintic activity against Schistosoma mansoni adult worms without toxicity to mammalian cells and an in vivo animal model (Caenorhabditis elegans), contributing to the development of new prototypes based on natural products for the treatment of schistosomiasis.


Assuntos
Anti-Helmínticos , Anti-Infecciosos , Produtos Biológicos , Eugenol/análogos & derivados , Lignanas , Nanopartículas Metálicas , Esquistossomose , Animais , Humanos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Esquistossomose/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Schistosoma mansoni , Produtos Biológicos/uso terapêutico , Mamíferos
9.
Bioorg Chem ; 130: 106230, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375352

RESUMO

Colorectal cancer is a type of cancer encountered worldwide and ranks third among all cancer types in terms of incidence. Polyphenols have been shown to have a wide range of biological functions, including a significant impact on cancer start, development, and promotion through regulating many signaling pathways. The aim of this study was to investigate the anticancer effects of isoeugenol based compounds 1, 2 on HT29 colorectal cancer cell line in vitro. MTT test and scratch assay were carried out to determine the effect of these compounds on HT29 cell proliferation and migration respectively. In addition, mRNA expression levels of apoptosis and metastasis-related genes (p53, Bcl2, Bax, Caspase 3, Caspase7, Caspase8, Caspase9, HIF1-α, VEGF, MMP-2, MMP-9) were examined by quantitative real-time PCR. The results indicated that 1 and 2 inhibited HT29 cell proliferation and induced apoptosis by increasing the Bax/Bcl2 ratio and Caspase-9 and Caspase-3 mRNA expression. In conclusion, the results of this study showed that the treatment of these compounds significantly suppressed the mRNA expressions of metastasis-related genes such as Matrix Metalloproteinase-2, Matrix Metalloproteinase-9, Vascular Endothelial Growth Factor and Hypoxia­Inducible Factor 1α.


Assuntos
Neoplasias do Colo , Metaloproteinase 2 da Matriz , Humanos , Proteína X Associada a bcl-2/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Metaloproteinase 2 da Matriz/genética , Fenóis/química , Fenóis/farmacologia , RNA Mensageiro , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Eugenol/análogos & derivados , Eugenol/química , Eugenol/farmacologia , Inibição de Migração Celular/efeitos dos fármacos
10.
Genes (Basel) ; 15(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38254925

RESUMO

Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) (B. dorsalis) is an important agricultural, major invasive, and quarantine pest that can cause significant damage to the economic value of the fruit and vegetable industry. Male bait is one of the most effective methods of surveying, monitoring, and controlling B. dorsalis. In our study, we constructed cDNA libraries using total RNA extracted independently from the antennae, mouthparts, and thoracic legs of male and female adults and the ovipositors of female adults and screened out four aldehyde-oxidase-related genes (AOX-related), C58800, C66700, C67485, and C67698. Molecular docking predictions showed that eight compounds, including 3,4-dimethoxycinnamyl alcohol, 3,4-dimethoxy-cinnamaldehyde, deet, ethyl N-acetyl-N-butyl-ß-alaninate, n-butyl butyrate, n-butyl butyrate, ethyl butyrate, methyl eugenol, and ethyl acetate, could combine with proteins encoded by the four B. dorsalis AOX-related genes. Furthermore, QPCR was performed to confirm that four compounds, including 3,4-dimethoxy cinnamic aldehyde, butyl levulinic acid ethyl ester (mosquito repellent), butyl butyrate, and methyl eugenol, induced significant changes in the AOX-related genes of B. dorsalis. These results provide useful information and guidance for the batch screening of potentially useful compounds and the search for effective attractants of B. dorsalis.


Assuntos
Acroleína , Aldeído Oxidase , Butiratos , Eugenol/análogos & derivados , Tephritidae , Feminino , Masculino , Humanos , Simulação de Acoplamento Molecular
11.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234759

RESUMO

In the present study, the anti-diabetic potential of Ocimum tenuiflorum was investigated using computational techniques for α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages. It aimed to elucidate the mechanism by which phytocompounds of O. tenuiflorum treat diabetes mellitus using concepts of druglikeness and pharmacokinetics, molecular docking simulations, molecular dynamics simulations, and binding free energy studies. Isoeugenol is a phenylpropene, propenyl-substituted guaiacol found in the essential oils of plants. During molecular docking modelling, isoeugenol was found to inhibit all the target enzymes, with a higher binding efficiency than standard drugs. Furthermore, molecular dynamic experiments revealed that isoeugenol was more stable in the binding pockets than the standard drugs used. Since our aim was to discover a single lead molecule with a higher binding efficiency and stability, isoeugenol was selected. In this context, our study stands in contrast to other computational studies that report on more than one compound, making it difficult to offer further analyses. To summarize, we recommend isoeugenol as a potential widely employed lead inhibitor of α-glucosidase, α-amylase, aldose reductase, and glycation based on the results of our in silico studies, therefore revealing a novel phytocompound for the effective treatment of hyperglycemia and diabetes mellitus.


Assuntos
Diabetes Mellitus , Óleos Voláteis , Aldeído Redutase , Eugenol/análogos & derivados , Guaiacol , Simulação de Acoplamento Molecular , Ocimum sanctum , alfa-Amilases , alfa-Glucosidases
12.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234876

RESUMO

Agastache rugosa (baechohyang) is one of the most important aromatic plants native to the Republic of Korea. A. rugosa fragrance has been used to prepare incense since the Goryeo Dynasty in Korea. The present study aimed to explore the variation in the composition of essential oils from A. rugosa among native populations in Korea. The seeds of A. rugosa were collected from 90 different sites in Korea and seedlings were raised in the nursery. Essential oils were extracted from these populations by the steam distillation extraction method and their chemical compositions were analyzed by GC-MS. The yield of essential oils of A. rugosa ranged between 0.11% and 0.86%. A total of 204 components were identified from 90 populations of A. rugosa. Out of 204 components, 32 components were common in more than 40 individuals of A. rugosa and these 32 components were selected for principal component analysis (PCA). On the basis of the essential oil compositions, six chemotypes-estragole, pulegone, methyl eugenol, menthone, isopulegone, and nepetalactone-were distinguished according to their major components. As a result of the cluster analysis, 90 individuals of A. rugosa could be classified into three groups: estragole, methyl eugenol, and pulegone. A. rugosa exhibited significant chemical diversity among the individuals. The distribution of chemotypes is associated with the collection of seeds, suggesting that genetic diversity may influence the variations in the chemical compositions and concentrations within the species. This chemical diversity serves as the background to select cultivars for the cultivation and industrial applications of A. rugosa cultivars with high essential oil yield and concentration of its chemical components.


Assuntos
Agastache , Mentha , Óleos Voláteis , Agastache/química , Derivados de Alilbenzenos , Anisóis , Monoterpenos Cicloexânicos , Eugenol/análogos & derivados , Humanos , Óleos Voláteis/química , Vapor
13.
Artigo em Inglês | MEDLINE | ID: mdl-35997563

RESUMO

The use of deep eutectic solvents (DESs) has great prospects because of the green and efficient characteristics, which can be used for developing analytical methods for foods. In this research, assisted by ultrasonic waves, a liquid-liquid microextraction detection method combined with gas chromatography was established for three anaesthetics (eugenol, isoeugenol, and methyl isoeugenol) in aquatic food. The processing conditions including the components, ratio of hydrogen bond acceptor and hydrogen bond donor, DES volume, ultrasonic time, and pH were evaluated and optimised to improve the extraction efficiency, which was based on the DES structures and properties. In-house method validation was carried out by applying to real samples. A Thymol: levulinic acid DES (with a molar ratio of 1:2) was used as the extractant and the recoveries were as high as 93-101% for eugenol, 90-100% for methyl isoeugenol, and 86-94% for isoeugenol with RSDs <5% under optimum conditions. The limit of detection and quantification of the eugenol compounds were 0.08-0.10 µg/mL and 0.26-0.33 µg/mL, respectively. The method has green credentials and comparable LOD to homologous apparatus, which can be used for the determination of eugenol components in aquatic food.


Assuntos
Microextração em Fase Líquida , Anisóis , Cromatografia Líquida de Alta Pressão/métodos , Solventes Eutéticos Profundos , Eugenol/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Microextração em Fase Líquida/métodos , Solventes/química , Timol , Ultrassom
14.
Biochim Biophys Acta Biomembr ; 1864(11): 184035, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987463

RESUMO

Dehydrodieugenol, a neolignan isolated from the Brazilian plant Nectandra leucantha (Lauraceae) with reported antiprotozoal and anticancer activity, was incorporated in Langmuir monolayers of selected lipids as cell membrane models, aiming to comprehend its action mechanism at the molecular level. The interaction of this compound with the lipids dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylserine (DPPS), and dipalmitoylphosphatidylglycerol (DPPG) was inferred through tensiometry, infrared spectroscopy, and Brewster angle microscopy. The interactions had different effects depending on the chemical nature of the lipid polar head, with expansion for DPPC monolayers, condensation for DPPE, and expansion (at low surface pressures) followed by the overlap of the isotherms (at high surface pressure values) for DPPS and DPPG. Effects caused by dehydrodieugenol in the negatively charged lipids were distinctive, which was also reflected in the hysteresis assays, surface potential-area isotherms, and rheological measurements. Infrared spectroscopy indicated that the drug interaction with the monolayer affects not only the polar groups, but also the acyl lipid chains for all lipids. These results pointed to the fact that the interaction of the drug with lipid monolayers at the air-water interface is modulated by the lipid composition, mainly considering the polar head of the lipids, as well as the hydrophobicity of the lipids and the drug. As negatively charged lipids pointed to distinctive interaction, we believe this can be related to the antiprotozoal and anticancer properties of the compound.


Assuntos
Lauraceae , Lignanas , Membrana Celular/química , Eugenol/análogos & derivados , Eugenol/análise , Lignanas/análise
15.
Front Immunol ; 13: 939106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967416

RESUMO

Aspirin eugenol ester (AEE) was a novel drug compound with aspirin and eugenol esterified. AEE had various pharmacological activities, such as anti-inflammatory, antipyretic, analgesic, anti-oxidative stress and so on. In this study, it was aimed to investigate the effect of AEE on the acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. In vitro experiments evaluated the protective effect of AEE on the LPS-induced A549 cells. The tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) were measured in the cell supernatant. The Wistar rats were randomly divided into five groups (n = 8): control group, model group (LPS group), LPS + AEE group (AEE, 54 mg·kg-1), LPS + AEE group (AEE, 108 mg·kg-1), LPS + AEE group (AEE, 216 mg·kg-1). The lung wet-to-dry weight (W/D) ratio and immune organ index were calculated. WBCs were counted in bronchoalveolar lavage fluid (BALF) and total protein concentration was measured. Hematoxylin-Eosin (HE) staining of lung tissue was performed. Glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), antioxidant superoxide dismutase (SOD), total antioxidant capacity (T-AOC), lactate dehydrogenase (LDH), C-reactive protein (CRP), myeloperoxidase (MPO), malondialdehyde (MDA), macrophage mobility inhibitory factor (MIF), TNF-α, IL-6, and IL-1ß activity were measured. The metabolomic analysis of rat serum was performed by UPLC-QTOF-MS/MS. From the results, compared with LPS group, AEE improved histopathological changes, reduced MDA, CRP, MPO, MDA, and MIF production, decreased WBC count and total protein content in BALF, pro-inflammatory cytokine levels, immune organ index and lung wet-dry weight (W/D), increased antioxidant enzyme activity, in a dose-dependent manner. The results of serum metabolomic analysis showed that the LPS-induced ALI caused metabolic disorders and oxidative stress in rats, while AEE could ameliorate it to some extent. Therefore, AEE could alleviate LPS-induced ALI in rats by regulating abnormal inflammatory responses, slowing down oxidative stress, and modulating energy metabolism.


Assuntos
Lesão Pulmonar Aguda , Antioxidantes , Aspirina , Eugenol , Células A549/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Aspirina/análogos & derivados , Aspirina/farmacologia , Aspirina/uso terapêutico , Eugenol/análogos & derivados , Eugenol/farmacologia , Eugenol/uso terapêutico , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo
16.
Int J Biol Macromol ; 219: 538-544, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35907466

RESUMO

Odorant-binding proteins (OBPs) are believed to play critical roles in host-seeking behavior. However, little attention was paid to its different functions in male and female. The antenna-specific OBP gene from Bactrocera dorsalis, BdorOBP13, was cloned and its expression profile was examined. The results showed that BdorOBP13 was exclusively expressed in male and female adults, which exhibited a high transcript level in antennae. After injection of BdorOBP13 dsRNA, its transcript level in males and females decreased significantly. Electrophysiological responses of RNAi-injected flies to, methyl eugenol (male attractant) and γ-octalactone (female attractant) decreased significantly. However, no significant changes in the electrophysiological response were observed in RNAi-injected flies to benzothiazole, (+),dipentene, and ethyl tiglate. The behavioral bioassay showed that males treated with RNAi significantly reduced their preference to methyl eugenol, while RNAi-injected females showed a significantly lower preference to γ-octalactone, suggesting that BdorOBP13 may have different functions between males and females: it may be involved in the detection of methyl eugenol in males but is involved in the detection of γ-octalactone in females. These findings improve our understanding of insect OBPs and their roles in insect chemosensation, which may provide us with new molecular targets in the management of B. dorsalis.


Assuntos
Receptores Odorantes , Tephritidae , Animais , Benzotiazóis/metabolismo , Eugenol/análogos & derivados , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Limoneno , Masculino , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Tephritidae/genética
17.
Nutr Cancer ; 74(10): 3701-3713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35703834

RESUMO

Piper betle L. is a popular medicinal plant in Asia, and extracts of the plant leaf are used for several therapeutics. It is known for its rich source of phenolic compounds, including hydroxychavicol. Hydroxychavicol is an allylbenzene that has gained much attention due to its anticancer properties. The current study quantified and purified hydroxychavicol from P. betle L. and predicted its anticancer competence through in silico and cytotoxicity studies. Leaf samples of 22 P. betle L. accessions from different locations of Tamil Nadu, India, were analyzed using reverse phase-high performance liquid chromatography for quantification of hydroxychavicol. The highest quantity of hydroxychavicol was obtained from the accession BV22 (89.2%). Chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of hydroxychavicol using SwissADME satisfied the physicochemical property guidelines of Lipinski's Rule of Five, ensuring its drug-likeness behavior. Molecular docking studies confirmed the interaction of hydroxychavicol with all 16 tested cancer targets. In Vitro MTT assay of hydroxychavicol in bone cancer cell lines (MG63) also demonstrated the anticancer competency, indicating the requirement to formulate the molecule as a drug in treating various types of cancers.


Assuntos
Piper betle , Eugenol/análogos & derivados , Índia , Simulação de Acoplamento Molecular , Piper betle/química , Extratos Vegetais/química , Folhas de Planta/química
18.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35647661

RESUMO

The anaesthetic isoeugenol has been used as metabolic suppressant for commercial transport of live lobsters in order to decrease energy expenditure and improve survival. Given the central role of mitochondria in metabolism and structural similarities of isoeugenol to the mitochondrial electron carrier coenzyme Q, we explored the influence on mitochondrial function of isoeugenol. Mitochondrial function was measured using high-resolution respirometry and saponin-permeabilised heart fibres from the Australasian red spiny lobster, Jasus edwardsii. Relative to vehicle (polysorbate), isoeugenol inhibited respiration supported by complex I (CI) and cytochrome c oxidase (CCO). While complex II (CII), which also reduces coenzyme Q, was largely unaffected by isoeugenol, respiration supported by CII when uncoupled was depressed. Titration of isoeugenol indicates that respiration through CI has a half-maximal inhibitory concentration (IC50) of 2.4±0.1 µmol l-1, and a full-maximal inhibitory concentration (IC100-) of approximately 6.3 µmol l-1. These concentrations are consistent with those used for transport and euthanasia of J. edwardsii and indicate that CI is a possible target of isoeugenol, like many other anaesthetics with quinone-like structures.


Assuntos
Anestésicos , Crangonidae , Palinuridae , Animais , Eugenol/análogos & derivados , Mitocôndrias , Ubiquinona
19.
Insect Biochem Mol Biol ; 147: 103801, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717009

RESUMO

The oriental fruit fly (Bactrocera dorsalis) is a devastating fruit pest that infests more than 450 plant species. Methyl eugenol (ME) has been used as male attractant to monitor and eradicate B. dorsalis populations for 70 years, but the molecular basis of its activity remains largely unclear. Previously, BdorOBP83b and BdorOBP56f-2 as odorant binding proteins (OBPs) were identified responsible for ME perception. In this study, ME-induced expression profiles and in vitro binding assays revealed that BdorOBP69a is also produced in response to ME and binds directly to it with strong affinity (Kd = 9.54 µM). BdorOBP69a-/- null mutants generated by CRISPR/Cas9 mutagenesis showed significantly lower electroantennogram and behavioral responses to ME than wild-type controls. Molecular docking analysis followed by site-directed mutagenesis showed that residues Leu89 and Phe145 are essential for the interaction between BdorOBP69a and ME. BdorOBP69a is therefore an important component involved in the perception of ME in B. dorsalis and a promising molecular target for the development of new male attractants. The molecular docking and binding assay data also provide an important reference for future OBP gene manipulation and ME chemical engineering to improve the efficiency of male attractants.


Assuntos
Tephritidae , Animais , Drosophila/metabolismo , Eugenol/análogos & derivados , Eugenol/química , Eugenol/metabolismo , Eugenol/farmacologia , Masculino , Simulação de Acoplamento Molecular , Percepção , Tephritidae/metabolismo
20.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458596

RESUMO

The present study involves the integrated network pharmacology and phytoinformatics-based investigation of phytocompounds from Ocimum tenuiflorum against diabetes mellitus-linked Alzheimer's disease. It aims to investigate the mechanism of the Ocimum tenuiflorum phytocompounds in the amelioration of diabetes mellitus-linked Alzheimer's disease through network pharmacology, druglikeness and pharmacokinetics, molecular docking simulations, GO analysis, molecular dynamics simulations, and binding free energy analyses. A total of 14 predicted genes of the 26 orally bioactive compounds were identified. Among these 14 genes, GAPDH and AKT1 were the most significant. The network analysis revealed the AGE-RAGE signaling pathway to be a prominent pathway linked to GAPDH with 50.53% probability. Upon the molecular docking simulation with GAPDH, isoeugenol was found to possess the most significant binding affinity (-6.0 kcal/mol). The molecular dynamics simulation and binding free energy calculation results also predicted that isoeugenol forms a stable protein-ligand complex with GAPDH, where the phytocompound is predicted to chiefly use van der Waal's binding energy (-159.277 kj/mol). On the basis of these results, it can be concluded that isoeugenol from Ocimum tenuiflorum could be taken for further in vitro and in vivo analysis, targeting GAPDH inhibition for the amelioration of diabetes mellitus-linked Alzheimer's disease.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Doença de Alzheimer/tratamento farmacológico , Eugenol/análogos & derivados , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ocimum sanctum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...